The generator matrix

 1  0  0  1  1  1  1  1  1  1 2X+3  1  X  1  1  1  1  1  X  1 2X  1  X  1  1  3  1  1  0  1 X+3  1  1  1  1  1  1 2X+6 2X  X  3 2X 2X+6  1  1  1  1  1  1  1  1  1  1  1  0  0 X+3 2X+6  1  1  1  1
 0  1  0  0  6 2X+4 2X+4 X+8  1 X+2  1  2  1  6  0  4 2X+4  4 2X X+2  1 2X+2  1  X 2X+5  1 2X+3  5  1 2X+1  1  3 2X+3 2X+8 2X+1  4 X+7  1  1  1  1  1 X+6  1 2X+8 X+6  5 2X+2 2X X+8 2X+4  4 2X  5  1  3 X+3  1 X+2  8 X+7 X+7
 0  0  1  1  2  2 2X+3  1  7 2X+3 2X+7 X+2 X+8  0 2X+8  7 2X+5  6  1 2X+6  6 X+2 X+8 X+7 X+7 X+7  3 X+5 X+2 X+4 2X+3 X+7 X+5  4  2 2X+6 X+4  4  7 X+3  X 2X+5  1 X+4 2X+1 2X 2X+2  0 X+8  7 X+1  0 X+1  4 2X+7  1  1 X+7 X+6 X+5 X+4 2X+1
 0  0  0 2X  3  6  0  6  0  3  0  3  6  X  6 X+3 2X+6 2X  X 2X+6  X X+6 X+3  0  X  X 2X+3 2X 2X+6 2X+3 2X+6 X+3  X 2X+6 X+3 X+6  6  3 2X  3 2X 2X+6 2X+6 2X+6 X+6 X+3 2X+3 2X+3 2X+6  X  X X+3  0  0 2X+3 X+3 2X 2X+6 2X+6 X+3 2X+6  6

generates a code of length 62 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 114.

Homogenous weight enumerator: w(x)=1x^0+768x^114+1224x^115+1980x^116+4502x^117+5724x^118+6498x^119+11478x^120+12798x^121+12996x^122+18732x^123+18288x^124+16866x^125+19886x^126+16146x^127+10512x^128+8742x^129+5022x^130+2124x^131+1614x^132+576x^133+54x^134+400x^135+174x^138+36x^141+6x^144

The gray image is a code over GF(3) with n=558, k=11 and d=342.
This code was found by Heurico 1.16 in 65.3 seconds.